Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genet Sel Evol ; 56(1): 26, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565986

RESUMO

BACKGROUND: Chinese indigenous sheep are valuable resources with unique features and characteristics. They are distributed across regions with different climates in mainland China; however, few reports have analyzed the environmental adaptability of sheep based on their genome. We examined the variants and signatures of selection involved in adaptation to extreme humidity, altitude, and temperature conditions in 173 sheep genomes from 41 phenotypically and geographically representative Chinese indigenous sheep breeds to characterize the genetic basis underlying environmental adaptation in these populations. RESULTS: Based on the analysis of population structure, we inferred that Chinese indigenous sheep are divided into four groups: Kazakh (KAZ), Mongolian (MON), Tibetan (TIB), and Yunnan (YUN). We also detected a set of candidate genes that are relevant to adaptation to extreme environmental conditions, such as drought-prone regions (TBXT, TG, and HOXA1), high-altitude regions (DYSF, EPAS1, JAZF1, PDGFD, and NF1) and warm-temperature regions (TSHR, ABCD4, and TEX11). Among all these candidate genes, eight ABCD4, CNTN4, DOCK10, LOC105608545, LOC121816479, SEM3A, SVIL, and TSHR overlap between extreme environmental conditions. The TSHR gene shows a strong signature for positive selection in the warm-temperature group and harbors a single nucleotide polymorphism (SNP) missense mutation located between positions 90,600,001 and 90,650,001 on chromosome 7, which leads to a change in the protein structure of TSHR and influences its stability. CONCLUSIONS: Analysis of the signatures of selection uncovered genes that are likely related to environmental adaptation and a SNP missense mutation in the TSHR gene that affects the protein structure and stability. It also provides information on the evolution of the phylogeographic structure of Chinese indigenous sheep populations. These results provide important genetic resources for future breeding studies and new perspectives on how animals can adapt to climate change.


Assuntos
Genoma , Seleção Genética , Ovinos/genética , Animais , China , Análise de Sequência de DNA , Altitude , Polimorfismo de Nucleotídeo Único
2.
Int J Mol Sci ; 25(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38474221

RESUMO

Hybridization of livestock can be used to improve varieties, and different hybrid combinations produce unique breeding effects. In this study, male Southdown and Suffolk sheep were selected to hybridize with female Hu sheep to explore the effects of male parentage on muscle growth and the development of offspring. Using data-independent acquisition technology, we identified 119, 187, and 26 differentially abundant proteins (DAPs) between Hu × Hu (HH) versus Southdown × Hu (NH), HH versus Suffolk × Hu (SH), and NH versus SH crosses. Two DAPs, MYOZ2 and MYOM3, were common to the three hybrid groups and were mainly enriched in muscle growth and development-related pathways. At the myoblast proliferation stage, MYOZ2 expression decreased cell viability and inhibited proliferation. At the myoblast differentiation stage, MYOZ2 expression promoted myoblast fusion and enhanced the level of cell fusion. These findings provide new insights into the key proteins and metabolic pathways involved in the effect of male parentage on muscle growth and the development of hybrid offspring in sheep.


Assuntos
Músculos , Proteômica , Masculino , Feminino , Animais , Ovinos , Diferenciação Celular , Crescimento e Desenvolvimento , Desenvolvimento Muscular
3.
Animals (Basel) ; 13(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38003169

RESUMO

The SLIT3 gene encodes a secreted protein, and the ZNF280B gene is a member of the transcription factor family. Both genes have multiple biological functions. This study was conducted to investigate the association between SLIT3 and ZNF280B gene polymorphisms and wool fiber diameter and to determine potential molecular marker sites for breeding sheep with fine wool. We used Kompetitive Allele-Specific PCR to type the single nucleotide polymorphism (SNP) loci in the SLIT3 and ZNF280B genes within 1081 Alpine Merino sheep and associated these SNPs with wool fiber diameter. The results revealed one SNP in SLIT3 and ZNF280B, which were each related to sheep fiber diameter. The wool fiber diameters of sheep with the CC genotype in SLIT3 g.478807C>G and AA genotype in ZNF280B g.677G>A were the smallest and differed significantly from the diameters of other genotypes (p < 0.05). These results suggest potential molecular marker sites for fine-wool sheep breeding.

4.
Animals (Basel) ; 13(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37893989

RESUMO

Wool color is controlled by a variety of genes. Although the gene regulation of some wool colors has been studied in relative depth, there may still be unknown genetic variants and control genes for some colors or different breeds of wool that need to be identified and recognized by whole genome resequencing. Therefore, we used whole genome resequencing data to compare and analyze sheep populations of different breeds by population differentiation index and nucleotide diversity ratios (Fst and θπ ratio) as well as extended haplotype purity between populations (XP-EHH) to reveal selection signals related to wool coloration in sheep. Screening in the non-white wool color group (G1 vs. G2) yielded 365 candidate genes, among which PDE4B, GMDS, GATA1, RCOR1, MAPK4, SLC36A1, and PPP3CA were associated with the formation of non-white wool; an enrichment analysis of the candidate genes yielded 21 significant GO terms and 49 significant KEGG pathways (p < 0.05), among which 17 GO terms and 21 KEGG pathways were associated with the formation of non-white wool. Screening in the white wool color group (G2 vs. G1) yielded 214 candidate genes, including ABCD4, VSX2, ITCH, NNT, POLA1, IGF1R, HOXA10, and DAO, which were associated with the formation of white wool; an enrichment analysis of the candidate genes revealed 9 significant GO-enriched pathways and 19 significant KEGG pathways (p < 0.05), including 5 GO terms and 12 KEGG pathways associated with the formation of white wool. In addition to furthering our understanding of wool color genetics, this research is important for breeding purposes.

5.
Int J Mol Sci ; 24(20)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37894908

RESUMO

Wool fiber is a textile material that is highly valued based on its diameter, which is crucial in determining its economic value. To analyze the molecular mechanisms regulating wool fiber diameter, we used a Data-independent acquisition-based quantitative proteomics approach to analyze the skin proteome of Alpine Merino sheep with four fiber diameter ranges. From three contrasts of defined groups, we identified 275, 229, and 190 differentially expressed proteins (DEPs). Further analysis using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways revealed that pathways associated with cyclic adenosine monophosphate and peroxisome proliferator-activated receptor signaling are relevant to wool fiber diameter. Using the K-means method, we investigated the DEP expression patterns across wool diameter ranges. Using weighted gene co-expression network analysis, we identified seven key proteins (CIDEA, CRYM, MLX, TPST2, GPD1, GOPC, and CAMK2G) that may be involved in regulating wool fiber diameter. Our findings provide a theoretical foundation for identifying DEPs and pathways associated with wool fiber diameter in Alpine Merino sheep to enable a better understanding of the molecular mechanisms underlying the genetic regulation of wool fiber quality.


Assuntos
Proteoma , Fibra de Lã , Animais , Proteoma/metabolismo , Lã/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica
6.
J Agric Food Chem ; 71(41): 15398-15406, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37815113

RESUMO

With the development of high-throughput sequencing technology, several nongenetic variations, including noncoding RNAs such as miRNAs, and DNA methylation, have been found to play an important role in animal muscle development and fat metabolism. In this study, Southdown and Suffolk were selected as male parents for hybridization with Hu sheep (Southdown × Hu (NH), Suffolk × Hu (SH), and Hu × Hu (HH)). RNA sequencing, bisulfite sequencing, and small-RNA sequencing were used to study the methylation patterns and differences in miRNA and mRNA expression in the F1 sheep longissimus dorsi muscle tissue. We identified 765 differentially expressed genes (DEGs), 10,161 differentially methylated regions (DMRs), and 164 differentially expressed miRNAs, which were significantly enriched in AMPK signaling, fatty acid degradation, metabolism, and other related pathways (P < 0.05). In addition, we constructed a DNA methylation-mRNA and miRNA-mRNA coexpression network. A total of 42 common genes were identified from DMRs and DEGs. Importantly, we predicted that 33 differentially expressed miRNAs directly or indirectly targeted the SLC27A6. The data obtained in this study provide useful information and evidence to support further understanding of the miRNA and DNA methylation of key genes regulating muscle growth and fat metabolism in hybrid sheep populations.


Assuntos
Metilação de DNA , MicroRNAs , Masculino , Animais , Ovinos/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Músculo Esquelético/metabolismo , Hibridização Genética
7.
Food Res Int ; 173(Pt 1): 113240, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803553

RESUMO

Consumers are increasingly demanding high-quality mutton. Cross breeding can improve meat quality and is widely used in sheep breeding. However, little is known about the molecular mechanism of cross breeding sheep meat quality. In this study, male Southdown and female Hu sheep were hybridized. The slaughter performance and longissimus dorsi quality of the 6-month-old hybrid offspring were measured, and the longissimus dorsi of the hybrid offspring was analyzed by transcriptomics and metabolomics to explore the effect of cross breeding on meat quality. The results showed that the production performance of Southdown × Hu F1 sheep was significantly improved, the carcass fat content was significantly decreased, and the eating quality of Southdown × Hu F1 sheep were better. Compared with the HS group (Hu × Hu), the NH group (Southdown × Hu) had 538 differentially expressed genes and 166 differentially expressed metabolites (P < 0.05), which were significantly enriched in amino acid metabolism and other related pathways. Up-regulated genes METTL21C, PPARGC1A and down-regulated gene WFIKKN2 are related to muscle growth and development. Among them, the METTL21C gene, which is related to muscle development, was highly correlated with carnosine, a metabolite related to meat quality (correlation > 0.6 and P < 0.05). Our results provide further understanding of the molecular mechanism of cross breeding for sheep muscle growth and meat quality optimization.


Assuntos
Carneiro Doméstico , Transcriptoma , Ovinos/genética , Masculino , Feminino , Animais , Carneiro Doméstico/genética , Hibridização Genética , Perfilação da Expressão Gênica , Músculos
8.
Animals (Basel) ; 13(18)2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37760270

RESUMO

This experiment was conducted to study the effects of dietary energy level on the growth performance and meat quality of weaned Alpine Merino lambs. The study ran for a total of 104 days (20-day pretrial, 84-day trial). From three groups of test lambs, we randomly selected ten lambs per group to determine slaughter performance, meat quality characteristics, and organ indexes. The slaughter performances of the lambs improved as the dietary energy level increased. The live weight before the slaughter of the lambs was significantly higher in the high group than in the low and medium groups. The carcass weight was significantly higher in the high group than in the low group. Dietary energy level had little effect on the organ weight of lambs. Meat quality differed among the three dietary energy levels. The muscle yellowness and redness scores decreased significantly as the energy levels increased. The C18:0, C21:0, C20:1, C18:2n6c, and C20:2 contents in the muscle were significantly higher in the high group than in the medium and low groups. The C18:3n6 content in the muscle was significantly higher in the low group than in the medium group. The C20:5n3 content in the longissimus dorsi was significantly higher in the high group than in the medium and low groups. The monounsaturated and unsaturated fatty acid contents in the muscle were significantly higher in the high group than in the low group. A dietary energy level of 10.5 MJ/kg is suitable for fattening weaned male Alpine Merino lambs.

9.
Animals (Basel) ; 13(18)2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37760343

RESUMO

Wool fineness affects the quality of wool, and some studies have identified about forty candidate genes that affect sheep wool fineness, but these genes often reveal only a certain proportion of the variation in wool thickness. We further explore additional genes associated with the fineness of sheep wool. Whole-genome resequencing of eight sheep breeds was performed to reveal selection signals associated with wool fineness, including four coarse wool and four fine/semi-fine wool sheep breeds. Multiple methods to reveal selection signals (Fst and θπ Ratio and XP-EHH) were applied for sheep wool fineness traits. In total, 269 and 319 genes were annotated in the fine wool (F vs. C) group and the coarse wool (C vs. F) group, such as LGR4, PIK3CA, and SEMA3C and NFIB, OPHN1, and THADA. In F vs. C, 269 genes were enriched in 15 significant GO Terms (p < 0.05) and 38 significant KEGG Pathways (p < 0.05), such as protein localization to plasma membrane (GO: 0072659) and Inositol phosphate metabolism (oas 00562). In C vs. F, 319 genes were enriched in 21 GO Terms (p < 0.05) and 16 KEGG Pathways (p < 0.05), such as negative regulation of focal adhesion assembly (GO: 0051895) and Axon guidance (oas 04360). Our study has uncovered genomic information pertaining to significant traits in sheep and has identified valuable candidate genes. This will pave the way for subsequent investigations into related traits.

10.
Int J Mol Sci ; 24(15)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37569302

RESUMO

Heat stress is an important environmental factor affecting livestock production worldwide. Primary hepatocytes and preadipocytes derived from Hu sheep were used to establish a heat stress model. Quantitative reverse transcriptase-PCR (qRT-PCR) analysis showed that heat induction significantly increased the expression levels of heat stress protein (HSP) genes and the N6-methyladenosine (m6A) methylation modification genes: methyltransferase-like protein 3 (METTL3), methyltransferase-like protein 14 (METTL14), and fat mass and obesity associated protein (FTO). Heat stress simultaneously promoted cell apoptosis. Transcriptome sequencing identified 3980 upregulated genes and 2420 downregulated genes related to heat stress. A pathway enrichment analysis of these genes revealed significant enrichment in fatty acid biosynthesis, degradation, and the PI3K-Akt and peroxisome proliferator-activated receptor (PPAR) signaling pathways. Overexpression of METTL3 in primary hepatocytes led to significant downregulation of HSP60, HSP70, and HSP110, and significantly increased mRNA m6A methylation; FTO interference generated the opposite results. Primary adipocytes showed similar results. Transcriptome analysis of cells under METTL3 (or FTO) inference and overexpression revealed differentially expressed genes enriched in the mitogen-activated protein kinase (MAPK) signaling pathways, as well as the PI3K-Akt and Ras signaling pathways. We speculate that METTL3 may increase the level of m6A methylation to inhibit fat deposition and/or inhibit the expression of HSP genes to enhance the body's resistance to heat stress, while the FTO gene generated the opposite molecular mechanism. This study provides a scientific basis and theoretical support for sheep feeding and management practices during heat stress.

11.
Front Genet ; 14: 985764, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968587

RESUMO

There is a genetic difference between Hu sheep (short/fat-tailed sheep) and Tibetan sheep (short/thin-tailed sheep) in tail type, because of fat metabolism. Previous studies have mainly focused directly on sheep tail fat, which is not the main organ of fat metabolism. The function of miRNAs in sheep liver fat metabolism has not been thoroughly elucidated. In this study, miRNA-Seq was used to identify miRNAs in the liver tissue of three Hu sheep (short/fat-tailed sheep) and three Tibetan sheep (short/thin-tailed sheep) to characterize the differences in fat metabolism of sheep. In our study, Hu sheep was in a control group, we identified 11 differentially expressed miRNAs (DE miRNAs), including six up-regulated miRNAs and five down-regulated miRNAs. Miranda and RNAhybrid were used to predict the target genes of DE miRNAs, obtaining 3,404 target genes. A total of 115 and 67 GO terms as well as 54 and 5 KEGG pathways were significantly (padj < 0.05) enriched for predicted 3,109 target genes of up-regulated and 295 target genes of down-regulated miRNAs, respectively. oar-miR-432 was one of the most up-regulated miRNAs between Hu sheep and Tibetan sheep. And SIRT1 is one of the potential target genes of oar-miR-432. Furthermore, functional validation using the dual-luciferase reporter assay indicated that the up-regulated miRNA; oar-miR-432 potentially targeted sirtuin 1 (SIRT1) expression. Then, the oar-miR-432 mimic transfected into preadipocytes resulted in inhibited expression of SIRT1. This is the first time reported that the expression of SIRT1 gene was regulated by oar-miR-432 in fat metabolism of sheep liver. These results could provide a meaningful theoretical basis for studying the fat metabolism of sheep.

12.
Animals (Basel) ; 14(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38200858

RESUMO

SNPs associated with important traits of fine-wool sheep that were previously obtained through genome-wide association analysis screening were verified and analyzed. A total of 20 SNPs related to birth weight, bundle strength, cleaning rate, and fiber diameter were screened using whole-genome resequencing, and the SNPshot assay was used to detect and analyze polymorphisms. This study found that, among the 20 SNPs associated with important traits in Alpine Merino sheep, 8 were monomorphic and 12 were polymorphic, of which 6 showed moderate polymorphisms and 6 showed low polymorphisms. The heterozygosity of the 12 polymorphic loci ranged from 0.10 to 0.49, the effective number of alleles ranged from 1.11 to 1.98, and the polymorphic information content ranged from 0.09 to 0.37. The chi-square test showed that only RHPN2:g.42678119T>G and RALYL:g.90030866A>G were in Hardy-Weinberg disequilibrium (p < 0.05); the other loci were in equilibrium (p > 0.05). These SNPs associated with important traits in Alpine Merino sheep provide a theoretical basis for genomic selection and molecular design breeding.

13.
Foods ; 11(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36553818

RESUMO

Crossbreeding significantly improves meat production performance in sheep; however, whether hybridization changes the meat quality characteristics of lambs is uncertain. We analyzed the effects of three different hybrid sires on muscle fiber characteristics (MFCs), fatty acid composition (FAC), and volatile flavor compounds (VFCs) in lambs under identical feeding conditions. Compared with those of purebred lambs, the muscle fiber diameter and cross-sectional areas of the crossbred lambs were significantly decreased (p < 0.05), and the collagen fiber content was significantly increased (p < 0.05). The numbers and area ratios of the fast and slow muscle fibers did not significantly differ between the purebred and crossbred lambs, but the expressions of four MyHC gene types differed significantly (p < 0.05). Twenty-three fatty acids were identified in both the purebred and crossbred lambs, of which thirteen were differentially expressed (p < 0.05). Saturated fatty acid (SFA) contents in the crossbred lambs were significantly increased (p < 0.05), whereas the monounsaturated fatty acid content was significantly decreased (p < 0.05). Polyunsaturated fatty acid/SFA and n-6/n-3 ratios were significantly lower in the crossbred lambs than in the purebred lambs (p < 0.05). Twenty-five VFCs were identified among the three hybrids, and aldehydes were the main VFCs. Eleven VFCs were differentially expressed in the crossbred lambs (p < 0.05). Hybrid sires affected the MFCs, FAC, and VFCs of the F1 lambs, thus providing a reference for high-quality mutton production.

14.
Front Nutr ; 9: 967985, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36034900

RESUMO

Crossbreeding improves and enhances meat quality and is widely used in sheep production; however, the molecular mechanisms underlying the meat quality of various crossbred sheep remain unknown. In this study, male Southdown, Suffolk and Hu sheep were crossbred with female Hu sheep, and the transcriptomes and metabolomes of the longissimus dorsi muscle of the F1 generation were sequenced to explore how different sire breeds affect meat quality. The results showed that 631 differentially expressed genes and 119 significantly altered metabolites contributed to muscle development characteristics and meat quality-related diversity (P < 0.05). These genes and metabolites were significantly enriched in lipid metabolism pathways, including arachidonic acid metabolism and PPAR signaling. Several candidate genes were associated with muscle growth, such as MYLK3, MYL10, FIGN, MYH8, MYOM3, LMCD1, and FLRT1. Among these, MYH8 and MYL10 participated in regulating muscle growth and development and were correlated with meat quality-related fatty acid levels (|r| > 0.5 and p < 0.05). We selected mRNA from four of these genes to verify the accuracy of the sequencing data via qRT-PCR. Our findings provide further insight into the key genes and metabolites involved in muscle growth and meat quality in hybrid sheep populations.

15.
Curr Issues Mol Biol ; 44(8): 3621-3631, 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36005144

RESUMO

The liver plays a crucial role in metabolism, synthesis, biotransformation, secretion, and excretion. Hepatocytes are the main cells of the liver and can be used as a cell model to study liver function. The classic method of collagenase perfusion to isolate hepatocytes is a two-step technique that is time-consuming, labor-intensive, and has high technical requirements. Therefore, in this study, we compared different methods for isolating and culturing primary hepatocytes. We found that the 0.25% trypsin and 0.1 mg/mL type IV collagenase mixture at a 1:1 ratio showed the most efficient cell digestion, and William's Medium E complete medium showed the best growth and proliferation. The isolated cells showed the typical irregular polygonal morphology of hepatocytes. Periodic acid−Schiff staining and immunofluorescence confirmed that the isolated cells were positive for glycogen and hepatocyte-specific markers cytokeratin 18, AFP, and albumin. On subculturing, stable cell lines were obtained. Therefore, we optimized the isolation and in vitro culture method to obtain highly pure (>95%) sheep primary hepatocytes from newborn sheep liver tissue.

16.
Curr Issues Mol Biol ; 44(2): 483-497, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35723319

RESUMO

Sheep testes undergo a dramatic rate of development with structural changes during pre-sexual maturity, including the proliferation and maturation of somatic niche cells and the initiation of spermatogenesis. To explore this complex process, 12,843 testicular cells from three males at pre-sexual maturity (three-month-old) were sequenced using the 10× Genomics ChromiumTM single-cell RNA-seq (scRNA-seq) technology. Nine testicular somatic cell types (Sertoli cells, myoid cells, monocytes, macrophages, Leydig cells, dendritic cells, endothelial cells, smooth muscle cells, and leukocytes) and an unknown cell cluster were observed. In particular, five male germ cell types (including two types of undifferentiated spermatogonia (Apale and Adark), primary spermatocytes, secondary spermatocytes, and sperm cells) were identified. Interestingly, Apale and Adark were found to be two distinct states of undifferentiated spermatogonia. Further analysis identified specific marker genes, including UCHL1, DDX4, SOHLH1, KITLG, and PCNA, in the germ cells at different states of differentiation. The study revealed significant changes in germline stem cells at pre-sexual maturation, paving the way to explore the candidate factors and pathways for the regulation of germ and somatic cells, and to provide us with opportunities for the establishment of livestock stem cell breeding programs.

17.
BMC Genomics ; 23(1): 457, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35725366

RESUMO

BACKGROUND: Hu sheep and Tibetan sheep in China are characterized by fat tails and thin tails, respectively. Several transcriptomes have been conducted in different sheep breeds to identify the differentially expressed genes (DEGs) underlying this trait. However, these studies identified different DEGs in different sheep breeds. RESULTS: Hence, RNA sequencing was performed on Hu sheep and Tibetan sheep. We obtained a total of 45.57 and 43.82 million sequencing reads, respectively. Two libraries mapped reads from 36.93 and 38.55 million reads after alignment to the reference sequences. 2108 DEGs were identified, including 1247 downregulated and 861 upregulated DEGs. GO and KEGG analyses of all DEGs demonstrated that pathways were enriched in the regulation of lipolysis in adipocytes and terms related to the chemokine signalling pathway, lysosomes, and glycosaminoglycan degradation. Eight genes were selected for validation by RT-qPCR. In addition, the transfection of BMP2 overexpression into preadipocytes resulted in increased PPAR-γ expression and expression. BMP2 potentially induces adipogenesis through LOX in preadipocytes. The number of lipid drops in BMP2 overexpression detected by oil red O staining was also greater than that in the negative control. CONCLUSION: In summary, these results showed that significant genes (BMP2, HOXA11, PPP1CC and LPIN1) are involved in the regulation of adipogenesis metabolism and suggested novel insights into metabolic molecules in sheep fat tails.


Assuntos
Adipogenia , Transcriptoma , Adipócitos/metabolismo , Adipogenia/genética , Animais , Perfilação da Expressão Gênica , Análise de Sequência de RNA , Ovinos/genética , Cauda/metabolismo
18.
Front Genet ; 13: 844747, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35559046

RESUMO

The fat tail is a unique characteristic of sheep that represents energy reserves and is a complex adaptative mechanism of fat-tailed sheep to environmental stress. MicroRNA plays a significant role as regulators at the posttranscriptional level, but no studies have explained the molecular mechanisms of miRNA which regulate fat deposition in sheep tails. In this study, mRNA and miRNA analysis examined tail fat tissue from three Hu fat-tailed and three Tibetan thin-tailed sheep. After aligning to the reference sequences, 2,108 differentially expressed genes and 105 differential expression miRNAs were identified, including 1,247 up- and 861 downregulated genes and 43 up- and 62 downregulated miRNAs. Among these differentially expressed miRNAs, oar-miR-432 was one of the most downregulated miRNAs between Hu sheep and Tibetan sheep, and 712 genes were predicted to be targeted by oar-miR-432, 80 of which overlapped with DEGs. The Gene Ontology analysis on these genes showed that BMP2, LEP, GRK5, BMP7, and RORC were enriched in fat cell differentiation terms. The genes for BMP2 targeted by oar-miR-432 were examined using dual-luciferase assay. The oar-miR-432 mimic transfected into preadipocytes resulted in increased expression of BMP2. The marker gene PPAR-γ of fat differentiation had a lower expression than the negative control on days 0, 2, and 4 after induced differentiation. The decrease in the number of lipids in the oar-miR-432 mimic group detected by oil red O stain was also less than that in the negative control. This is the first study to reveal the fat mechanisms by which oar-miR-432 inhibits fat differentiation and promotes the expression of BMP2 in sheep tails.

19.
Front Nutr ; 9: 852399, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35600824

RESUMO

Dongxiang tribute sheep have a history of use in food dishes such as "Dongxiang Handgrip," which dates back hundreds of years and is a favorite halal food in northwestern China. However, little is known about the mutton quality characteristics of Dongxiang tribute sheep. Here, we measured the sensory characteristics, nutritional quality, and flavor substances to comprehensively evaluate the mutton quality characteristics of these sheep. The mutton qualities of Dongxiang tribute, Tibetan, Ujumqin, and Hu sheep were comprehensively evaluated by membership function. Subsequently, the volatile components in mutton samples from 30 Dongxiang tribute sheep were detected via gas chromatography and ion mobility spectrometry (GC-IMS), and their fingerprints were established. The result of meat quality revealed that the shear force, the contents of protein, essential amino acid (EAA), non-essential amino acid (NEAA), and n-6/n-3 ratio of Dongxiang tribute mutton were better than the other three breeds. Membership functions were calculated for 10 physical and chemical indexes of mutton quality, and the comprehensive membership function values of the four breeds in order of highest to lowest mutton quality were Tibetan sheep (0.76) > Dongxiang tribute sheep (0.49) > Hu sheep (0.46) > Ujumqin sheep (0.33). Thirty volatile compounds were identified via GC-IMS: seven alcohols, eight aldehydes, five ketones, two esters, two phenols, one ether, one furan, one acid, two hydrocarbons, and one pyrazine. Ketones, aldehydes, and alcohols were the main volatile compounds forming the flavor of Dongxiang tribute sheep mutton. The reliability of the results was validated by PCA (principal component analysis) and similarity analyses. Our results provide reference value for consumers of mutton in China.

20.
PLoS One ; 17(3): e0264804, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35231067

RESUMO

MicroRNA (miRNA) is a kind of noncoding RNA whose function involved in various biological processes in neuronal maturation and adipocyte cells, such as differentiation, proliferation, development, apoptosis, and metabolism. Herein, miRNA-Seq was used to identify miRNAs in the tail fat tissue of Hu sheep (short-fat-tailed) and Tibetan sheep (short-thin-tailed). In this study, 155 differentially expression miRNAs (DE miRNAs) were identified, including 78 up-regulated and 77 down-regulated. Among these DE miRNAs, 17 miRNAs were reported and related with lipid metabolism. MiRanda and RNAhybrid software were used to predict the target genes of DE miRNAs, obtaining the number of targeting relationships is 38553. Target genes were enriched by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). 742 terms and 302 single pathways are enriched, including lipid metabolic process, response to lipid, cellular lipid catabolic process, lipid catabolic process, cellular lipid metabolic process, inositol lipid-mediated signaling, calcium channel activity, PI3K-Akt signaling pathway, MAPK signaling pathway, ECM-receptor interaction, AMPK signaling pathway, Wnt signaling pathway and TGF-beta signaling pathway. Notably, miR-379-5p was associated with tail fat deposition of sheep. Dual-Luciferase reporter assays showed miR-379-5p and HOXC9 had targeted relationship. The result of RT-qPCR showed that the expression trend of miR-379-5p and HOXC9 was opposite. miR-379-5p was down-regulated and highly expressed in tail adipose tissue of Tibetan sheep. HOXC9 was highly expressed in adipose tissue of Hu sheep. These results could provide a meaningful theoretical basis for studying the molecular mechanisms of sheep tail adipogenesis.


Assuntos
MicroRNAs , Transcriptoma , Animais , Perfilação da Expressão Gênica , Lipídeos , MicroRNAs/genética , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Ovinos/genética , Cauda/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...